p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.106D4, C4○D4.52D4, D4.42(C2×D4), C4⋊C4.9C23, Q8.42(C2×D4), C22⋊SD16⋊2C2, C22⋊C8⋊6C22, (C2×C8).10C23, C4.44(C22×D4), C4.107C22≀C2, D4.7D4⋊14C2, (C2×C4).226C24, C24.4C4⋊6C2, C22⋊Q16⋊12C2, (C2×Q16)⋊14C22, (C2×SD16)⋊5C22, C23.649(C2×D4), (C22×C4).788D4, C22⋊Q8⋊64C22, (C2×Q8).21C23, D4⋊C4⋊11C22, Q8⋊C4⋊14C22, C22.18C22≀C2, (C2×D4).381C23, C23.36D4⋊2C2, C22⋊5(C8.C22), (C2×M4(2))⋊3C22, (C22×Q8)⋊13C22, C2.9(D8⋊C22), (C23×C4).546C22, (C22×C4).964C23, C22.486(C22×D4), (C22×D4).565C22, (C2×C4⋊C4)⋊47C22, (C2×C4).453(C2×D4), (C2×C8.C22)⋊7C2, (C2×C22⋊Q8)⋊53C2, C2.44(C2×C22≀C2), C2.11(C2×C8.C22), (C22×C4○D4).24C2, (C2×C4○D4).297C22, SmallGroup(128,1739)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.106D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=f2=d, ab=ba, eae-1=faf-1=ac=ca, ad=da, bc=cb, ebe-1=bd=db, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e3 >
Subgroups: 716 in 377 conjugacy classes, 110 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C24, C22⋊C8, D4⋊C4, Q8⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22⋊Q8, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C24.4C4, C23.36D4, C22⋊SD16, C22⋊Q16, D4.7D4, C2×C22⋊Q8, C2×C8.C22, C22×C4○D4, C24.106D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C8.C22, C22×D4, C2×C22≀C2, C2×C8.C22, D8⋊C22, C24.106D4
(2 30)(4 32)(6 26)(8 28)(9 20)(11 22)(13 24)(15 18)
(1 29)(2 26)(3 31)(4 28)(5 25)(6 30)(7 27)(8 32)(9 20)(10 17)(11 22)(12 19)(13 24)(14 21)(15 18)(16 23)
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 11 5 15)(2 14 6 10)(3 9 7 13)(4 12 8 16)(17 26 21 30)(18 29 22 25)(19 32 23 28)(20 27 24 31)
G:=sub<Sym(32)| (2,30)(4,32)(6,26)(8,28)(9,20)(11,22)(13,24)(15,18), (1,29)(2,26)(3,31)(4,28)(5,25)(6,30)(7,27)(8,32)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11,5,15)(2,14,6,10)(3,9,7,13)(4,12,8,16)(17,26,21,30)(18,29,22,25)(19,32,23,28)(20,27,24,31)>;
G:=Group( (2,30)(4,32)(6,26)(8,28)(9,20)(11,22)(13,24)(15,18), (1,29)(2,26)(3,31)(4,28)(5,25)(6,30)(7,27)(8,32)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23), (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,11,5,15)(2,14,6,10)(3,9,7,13)(4,12,8,16)(17,26,21,30)(18,29,22,25)(19,32,23,28)(20,27,24,31) );
G=PermutationGroup([[(2,30),(4,32),(6,26),(8,28),(9,20),(11,22),(13,24),(15,18)], [(1,29),(2,26),(3,31),(4,28),(5,25),(6,30),(7,27),(8,32),(9,20),(10,17),(11,22),(12,19),(13,24),(14,21),(15,18),(16,23)], [(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,11,5,15),(2,14,6,10),(3,9,7,13),(4,12,8,16),(17,26,21,30),(18,29,22,25),(19,32,23,28),(20,27,24,31)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | ··· | 2L | 4A | ··· | 4F | 4G | ··· | 4K | 4L | 4M | 4N | 4O | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | C8.C22 | D8⋊C22 |
kernel | C24.106D4 | C24.4C4 | C23.36D4 | C22⋊SD16 | C22⋊Q16 | D4.7D4 | C2×C22⋊Q8 | C2×C8.C22 | C22×C4○D4 | C22×C4 | C4○D4 | C24 | C22 | C2 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 2 | 1 | 3 | 8 | 1 | 2 | 2 |
Matrix representation of C24.106D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
6 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
11 | 2 | 0 | 0 | 0 | 0 |
7 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 12 | 5 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
11 | 2 | 0 | 0 | 0 | 0 |
8 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 12 | 5 |
G:=sub<GL(6,GF(17))| [1,6,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[11,7,0,0,0,0,2,6,0,0,0,0,0,0,0,0,12,5,0,0,0,0,5,5,0,0,12,12,0,0,0,0,12,5,0,0],[11,8,0,0,0,0,2,6,0,0,0,0,0,0,12,5,0,0,0,0,5,5,0,0,0,0,0,0,12,12,0,0,0,0,12,5] >;
C24.106D4 in GAP, Magma, Sage, TeX
C_2^4._{106}D_4
% in TeX
G:=Group("C2^4.106D4");
// GroupNames label
G:=SmallGroup(128,1739);
// by ID
G=gap.SmallGroup(128,1739);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,2019,248,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=f^2=d,a*b=b*a,e*a*e^-1=f*a*f^-1=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations